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Introduction

Using geospatial, machine learning, and optimization techniques, a field scoring and design 
framework known as the bioenergy Landscape Environmental Assessment and Design System 
(bioLEADS) was developed and used to show through modelling that it is possible to reduce 
biomass feedstock access costs, improve field revenue, and shift intensive row crop production 
away from subfield areas susceptible to erosion and low in soil organic carbon. The purpose of 
bioLEADS is to automate agricultural field selection and subfield allocation to perennial energy 
crop production while incorporating reduced biomass feedstock access costs to support attaining 
the U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) cost targets. In 
FY2018, a techno-economic analysis (TEA) was developed to evaluate how ILM could be 
leveraged to reduce biomass feedstock access costs (Griffel et al. 2018). The analysis showed it 
was possible to reduce access costs by 20 percent from baseline assumptions outlined in the 
Herbaceous Feedstock 2017 SOT Report (Roni et al. 2017) by shifting costly row-crop inputs 
away from low-yielding subfield areas in favor of more efficient perennial energy crops. 
However, during the process of conducting the TEA, need modelling capabilities were identified 
to improve and modernize ILM analysis efforts and achieve industrial relevance. These 
capability needs are as follows:

 Field Efficiency Estimation – a method to estimate equipment field efficiency based on 
field shape and area metrics,

 Field Suitability for Perennial Energy Crop Production – the ability to identify and score 
agricultural fields most suitable (environmentally and economically) for biomass 
feedstock production,

 Biomass Feedstock Field Allocation – a technique to allocate county-level biomass 
feedstock production estimates derived from the Policy Analysis System Model 
(POLYSYS) in coordination with researchers at Oak Ridge National Laboratory 
(ORNL),

 Crop Yield Prediction – the ability to access high spatial resolution row crop yield 
variability data,

 Subfield Crop Allocation – a capability that incorporates data/methods from the 
previously described capabilities along with necessary assumptions to generate optimal 
agricultural field designs incorporating energy and row crop production that can 
maximize economic and environmental outcomes based on user priorities.

Previous ILM modelling efforts have utilized the Landscape Environmental Assessment 
Framework (LEAF), which has a well-documented history of supporting multiple landscape-
level biomass analysis efforts (Muth et al. 2012, Muth et al. 2013, Nair et al. 2017). At its core, 
LEAF is comprised of the United States Department of Agriculture (USDA) Revised Universal 
Soil Loss Equation version 2 (RUSLE2) and Wind Erosion Prediction System (WEPS) models. 
However, it is not well suited to directly address the capability gaps identified during the TEA.
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During FY19 and FY20, modelling capabilities were developed to fill the identified
capability needs that resulted in bioLEADS a new framework to advance the state of ILM 
modelling. This resulted in the ability to leverage bioLEADS to reduce biomass feedstock access 
costs beyond the initial target of 20 percent while improving aggregate economic revenue at a 
field level. Figure 1 shows a diagram of the integration of these capabilities into the bioLEADS 
framework. Field site suitability for perennial energy crop production is used to score potentially 
tens of thousands of agricultural fields within a defined region for suitability to produce biomass 
feedstocks based on criteria spanning agronomic, operational, and environmental domains. 
Based on the field scores and POLYSYS metadata outputs, county-level biomass feedstock 
production estimates are allocated in a way that favors higher scoring (more suitable) fields for 
either perennial energy crop production or excess crop residue collection. Next, specific fields 
identified for energy crop production where producers want to maintain some traditional row-
crop production (Partial) are identified. Crop yield maps are generated using the crop yield 
prediction capability and inputted, along with additional assumptions, into a spatial genetic 
algorithm (GA) to allocate subfield areas to energy and row crop production in ways that 
maximize field-level economic and environmental outcomes based on user priorities. The 
following sections will include brief methods descriptions and highlight key results of each 
bioLEADS component ending in field-level demonstrations of reduced feedstock costs to 
support BETO cost targets.

Figure 1. A diagram of the component methods and data flow through bioLEADS.

Field Efficiency Estimation

For the purposes of this analysis, field efficiency (FE) is defined as follows:
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�� =
���
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1

where Tdf (delay-free time) is the time to complete the operation with no delays or 
disengagement and Td (time disengaged) is the time spent where the equipment is disengaged. Td
is impacted by field area and geometry which impacts turn efficiency, the number of turns 
required during the operation at headlands and when navigating around obstructions, and 
distance travelled in the headlands.

Methods Brief

Two approaches were developed and evaluated for computational efficiency and accuracy. 
The first method is based on field boundary shape and area metrics in an equation derived from 
linear regression and described by Griffel et al. (2020). The second method incorporates a 
simulation framework to digitally generate actual field operation movement pathways and is 
described Toba et al. (2020). 

Key Results

Both methods yielded accuracies above 70% when compared to empirical data. However, to 
maximize the computational efficiency of bioLEADS, it was decided to incorporate the linear 
regression method based on field boundary shape and area metrics. Equation 2 (Griffel et al. 
2020) shows the field efficiency equation:

��� = 0.179 + (−0.145 ∗ ��
��

��
) 2

where FE for field i is derived from linear regression incorporating the field perimeter length P
for field i and the farmable area (A) of field i. 

Field Suitability for Perennial Energy Crop Production

The field suitability method was developed to score agricultural fields for suitability of
energy crop production, such as Panicum virgatum (switchgrass). The capability incorporated 
multi-criteria site suitability and is intended to be able to score individual agricultural fields at 
county or regional scales using criteria within agronomic, field operability, and environmental 
domains. Specifically, it is meant to identify and score fields based on suitable crop rotations, 
row-crop productivity, vulnerability to erosion, and greater potential for carbon storage. At a 
high level, suitability for perennial energy crops such as switchgrass are assumed to be higher 
where row crop yields are lower and environmental vulnerability is higher. Perennial energy 
crops typically offer an alternative cropping system within the agricultural landscape where 
traditional row crops are not well suited because of suboptimal soil or topographic features. It 
has also been shown that switchgrass grown on marginal land had a greater potential ethanol 
yield than the total yield of corn grain and harvested stover from comparable sites (Gelfand et al. 
2013).
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Methods Brief

Table 1 shows the individual criterion in each domain along with its scoring function. Each 
criterion is standardized to a value between 0 and 1. The site suitability value for each field is 
calculated using a linear fuzzy-logic prediction model (Wu et al. 2011) shown in equation 3:

���� = ����,���� ∗ � � � 3

where SSI for field i is the site suitability index, �� is the fuzzy value of a criteria m for field i, 
�� is the weight of criteria m, � � is the criteria score of constraint n (Binary value), and ∏ is the 
product. In this analysis, m = 8 and n = 3. Binary values (0 and 1) were assigned to the 3 
constraint criteria include land cover, crop rotation, and topography based on the site preference 
and acceptable range. The land cover and crop rotation metrics were derived from USDA 
Cropland Data Layers (CDL) for 2019. CDL layers denote specific land uses and are derived 
from remote sensing and classification analysis coupled with extensive on-the-ground 
verification to verify classification accuracy. Fuzzy-logic membership functions were built to 
determine the fuzzy value of the other 8 criteria, including available soil water storage (AWS), 
National Commodity Crop Productivity Index (NCCPI), field efficiency (FE), soil organic 
carbon (SOC), water leaching index, distance to water bodies, and soil erosivity index (K). For 
criteria (3), (4) and (7), areas with lower soil available water, NCCPI and soil organic carbon are 
more suitable for producing perennial energy crops. The final calculation normalizes the site 
suitability values to a range of 0 and 1 based on the weighting values. For this analysis, all 
weighting values were set to 1.

Table 1. Domains and criteria comprising the Multi-Criteria Site Suitability framework.

Domain Criteria Scoring Function

Agronomic 

(1) Land cover
� = 1: land cover is crop;
� = 0: land cover is non-crop

(2) Crop rotation
� = 1: non-specialty crop; 
� = 0: specialty crop 

(3) Available soil water storage 
within crop root zone depths

�� = 1 − ���

(Soil Survey Staff, 2019)

(4) National Commodity Crop 
Productivity Index

�� = 1 − ���

(Soil Survey Staff, 2019)

Field 
operability

(5) Field efficiency
�� = ���

(Griffel et al. 2020)

(6) Topography (slope)

�� = ���;
� = 1: slope ≤ 16.70 degrees
� = 0: slope > 16.70 degrees 
(Murphy et al. 1985)

Environmental
(7) Soil organic carbon in the 0-

30cm layer
�� = 1 − ���

(Soil Survey Staff, 2019)
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(8) Water leaching index
�� = ���

(Czymmek et al. 2003) 

(9) Distance to water bodies

(10) Soil erosivity index
�� = ���

(Soil Survey Staff, 2019)

The Field suitability method was used to score individual agricultural fields in a Midwest 
region spanning 50 counties in southern Nebraska, northern Kansas, and eastern Colorado for 
suitability for perennial switchgrass production. This area has been used as a herbaceous 
fuelshed region over the past two years for both ILM and Feedstock Technologies (WBS 1.1.1.2) 
modelling efforts. This allows for the transfer of ILM benefits and insights to State of 
Technology (SOT) reports and design cases. Figure 2 shows the footprint of the fuelshed region. 
The binary crop rotation function was limited to non-perennial row crops common to the region 
including corn grain, soybeans, spring and winter wheat, sorghum, oats, barley, cotton, and 
fallow. 

Figure 2. The fuelshed region (outlined in red) spanning northeast Colorado, northwest Kansas, 
and southwest Nebraska used for ongoing ILM and Feedstock Technologies modelling.

�� = �

1: 0 ≤ �� ≤ 200
(�� − 200)

3000 − 200
: 200 < �� < 3000

0: 3000 ≤ ��

(Houlahan et al. 2004)
(Tran et al. 2019)



INL/EXT-20-60469

Page 6

Individual field boundaries were delineated using publicly available Common Land Unit 
(CLU) data from 2008. Developed and maintained by the USDA Farm Service Agency (FSA), 
CLUs represent the smallest unit of land with permanent, contiguous boundaries under a 
common land cover and land management schema. Although updated annually, current CLU 
data have not been publicly available since the enactment of The Food, Conservation, and 
Energy Act of 2008. The latest publicly available dataset was generated in 2008. However, it 
represents the best-known proxy for field boundaries available for wide-scale modelling efforts 
requiring individual field boundary delineation.

Key Results

A total of 336,555 CLU parcels spanning the 50-county region were scored using the criteria 
listed in Table 1. Out of the initial field boundary group, 164,729 CLU parcels were identified 
with SSI scores above 0 – those scoring 0 were excluded because of crop rotation or slope 
restrictions via the binary scoring functions. Figure 3 shows a map of the fields symbolized by 
the SSI scores and SSI data distribution for the 50-county fuel shed.

Figure 3. A map of the fields (left) scored for suitability for perennial energy crop 
production where low-scoring fields are symbolized in the red spectrum and high-scoring fields 
are symbolized in the green spectrum. The histogram (right) shows the SSI distribution for all 
fields in the fuelshed region. The inset shows the histogram for fields with SSI values greater 

than 0.

Figure 4 shows the resultant standardized distributions and ranges of the individual criteria 
generating continuous values that, along with the binary functions (not displayed in Figure 3), 
were used to calculate the final field SSI using the fuzzy logic prediction model. These results 
indicate that stream proximity, soil organic carbon levels, soil erosivity (K Factor) and field 
efficiency were the largest influencers of the resultant SSI values for the regions.
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Figure 4. Data distributions of individual criteria with continuous scoring functions for the 50-
county fuelshed. The horizontal bars represent the criteria score mean which is shown in the 

associated text.

Biomass Feedstock Field Allocation

Using the scored fields, potential switchgrass feedstock supplies at a field-level were 
modeled using POLYSYS outputs provided by researchers at ORNL. POLYSIS is a partial 
equilibrium model that simulates the U.S. agricultural sector (De la Torre Ugarte and Ray 2000). 
POLYSYS has been used to explore potential future supplies and prices of biomass feedstocks 
(USDOE 2016, 2011; Langholtz et al. 2014; Hellwinckel et al. 2015). The model reports 
potential future biomass supplies and crop production given 1) projected future demands for 
food, feed, fiber, and export, 2) county-level cropland areas, 3) county-level crop yields and 
production budgets, and 4) specified prices offered for biomass feedstocks. POLYSYS solves for 
the most profitable allocation of agricultural lands to the various crop options, from the 
landowner’s perspective, solving at an annual timestep. In addition to potential future biomass
supplies, an output of POLYSYS is the county-level land-use transition matrix, i.e., the amount 
of land drawn from and allocated to each crop type in each year. This provides a basis to explore 
the county-level croplands that can transition from row crops to perennial energy crops subject to 
the weighted objectives in the present analysis.

Methods Brief

For this analysis, a simulation from 2019 to 2028 was executed with a farmgate price of $66 
Mg-1. POLYSYS generates multiple outputs after a simulation run delivering biomass supply 
estimates at a county levels along with detailed information on which crops could potentially be 
replaced for perennial energy crop production. Methods were developed to allocate switchgrass 
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production from the county-level POLYSYS outputs to individual fields based on specific crop 
types and the SSI score where higher scoring fields would have the highest priority. As part of 
the outputs, POLYSYS generates a probability value for each major crop type by county to 
transition to switchgrass production by 2028. Those values were used in conjunction with field 
data to estimate the number of acres of each crop type that would be allocated to switchgrass for 
this analysis. This is shown in equation 4:

����,� = ��,� ∗ ��,�  4

where switchgrass acres (sgA) for county i drawn from crop acres c are the product of the 
POLYSYS probability estimate (P) that crop c for county i will be transitioned to switchgrass 
production by 2028 and the estimated crop acres (A) for crop c in county i derived from the 
scored field data that contained crop associated crop type information from 2019 CDL data. 
After calculating the estimated switchgrass acres for each county and crop type, a method was 
developed to distribute the calculated switchgrass acres to individual fields by allocating to fields 
based on the associated crop type with the highest SSI score until the estimated acreage was 
completely allocated. Production values were also allocated using county-level yield estimates 
derived from POLYSYS outputs. Additionally, given that the POLYSYS outputs also included 
estimated values for production and acres of total switchgrass by county for 2028, the values 
calculated as previously described were aggregated and compared to the POLYSYS county-level 
acreage and production predictions. It is important to note that these outputs could not be used to 
generate crop-type-specific acreage allocations which is why the previously described method 
based on crop-transition probabilities was developed.

Key Results

A total of 9,431 fields were allocated to switchgrass production spanning 17 counties in 
Kansas. Figure 5 shows a map of the individual fields bounded by the fuelshed boundary and the 
associated distribution of SSI values of switchgrass fields. The fields are symbolized as shown in 
Figure 5 based on the SSI – visual analysis and the distribution indicate that the switchgrass 
allocation method favored higher scoring fields.
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Figure 5. A map of the fields allocated to switchgrass production using the county-level 
POLYSYS output data spanning 17 counties. The histogram on the right shows the SSI 

distribution for the switchgrass fields.

The results of the comparison analysis indicate the method developed to allocate crop-
specific switchgrass acres by the product of POLYSYS probability values and county and crop-
type specific area estimates derived from the individual fields using 2019 CDL data and the 
POLYSYS county level estimates are generally aligned. Total switchgrass acreage allocation 
using the probability-based function was 806,582 acres and the POLYSYS estimate was 791,443 
acres. Total switchgrass production (dt) using the probability-based function was 3,174,146 dt 
and the POLYSYS estimate was 3,135,704 dt. Figure 6 shows county-level comparisons for both 
switchgrass acres and production (dt) estimates. The plot on the left shows the acreage 
comparison by county geoid and the plot on the right shows the production (dt) comparison by 
county geoid. It is likely discrepancies are the result of different crop-specific acreage estimates 
by county. The probability-based method calculated crop type acreages by spatially intersecting 
CLU field boundaries and CDL data and assigning crop types to fields based on the majority of 
CDL pixels categorizing the crop type. POLYSYS crop acreage estimates are primarily derived 
from USDA National Agricultural Statistics Service (NASS) data and augmented with CDL data 
when specific county NASS metrics are not available. 

Switchgrass Acreage Comparisons Switchgrass Production Comparisons

Figure 6. Comparison analysis results of county aggregate field-level switchgrass acreage and 
production estimates of the probability-based method and POLYSYS county-level estimates.

At this juncture, fields have been identified for switchgrass production via the site suitability 
and allocation methods. Following this, there are two potential pathways for field allocation for 
farmers and/or landowners to adopt biomass production practices – a full field transition to 
switchgrass or a partial field transition where farmers integrate switchgrass production at a sub-
field level while maintaining traditional row-crop production practices in more suitable subfield 
areas based on economic or environmental constraints. The following sections outline 
bioLEADS methods supporting advanced subfield designs where switchgrass is integrated into 
sub-field areas allowing farmers and/or land owners to maintain some row crop production in 
optimal subfield areas based on economic and environmental preferences.



INL/EXT-20-60469

Page 10

Crop Yield Prediction

A critical dataset to support the integration of switchgrass into sub-field areas are accurate 
geospatial subfield yield maps. Crop yields drive field economic outcomes when accounting for 
crop input costs, yield values, and crop prices paid to farmers. Although modern grain harvesters 
are typically equipped with yield monitors capable of logging this type of data, many farmers 
have demonstrated an unwillingness to either archive or share this type of data. Past modelling 
efforts have utilized publicly USDA Soil Survey Geographic (SSURGO) data that provide 
estimates on soil productivity with the NCCPI metric. However, spatial subfield yield patterns 
derived from SSURGO can vary significantly from empirical and more accurate harvest monitor 
yield data. Figure 7 shows a comparison of empirical subfield corn grain yield patterns (left) and 
associated SSURGO delineations (right). SSURGO data also lacks the spatial resolution to 
represent subfield yields as continuous gradients, which is how subfield yield patterns typically 
occur in real-world empirical data. In Figure 7, the harvest monitor data shows the spatially 
continuous nature of subfield yield patterns (red areas indicate lower yielding areas and green 
areas represent higher yielding areas). Overall, the harvest monitor data indicates lower yielding 
subfield areas in the north and south field corners on the west side. The SSURGO data shows a 
different pattern consisting of only three distinct sub-field yield values represented by the green, 
red, and orange coloring. Because of these disparities, it was decided to develop a way to 
leverage publicly available satellite imagery to develop high spatial resolution subfield yield data 
that is more aligned with empirical harvest monitor data to generate more accurate and 
industrially relevant advanced ILM field designs incorporating switchgrass production in 
subfield areas.

Harvest Monitor Data SSURGO Yield Estimation
Figure 7. A comparison of empirical harvest monitor yield data (left) and SSURGO-defined 

subfield yield variability (right).

Methods Brief

To realize this capability, artificial neural networks (ANNs) were trained to predict corn 
grain, soybean, and wheat grain subfield yield values using satellite imagery. Specifically, 
several hundred megabytes of spatiotemporal crop yield data derived from harvesting equipment 
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furnished with yield monitors were compiled via agricultural industry collaborators. The yield 
data were collected at one-second time intervals and included multiple fields of corn grain, 
wheat, and soybeans spanning multiple years. Significant effort was made to capture data 
collected via operators implementing yield monitor calibration practices to support model 
generalization and accuracy. Given harvest operations tend to occur within “compressed” 
timeframes requiring long operator hours to complete harvest operations within limited seasons, 
yield monitor calibration is not a common practice and severely limits availability of statistically 
sound yield data with which to develop models. The data used for this analysis were confirmed 
to be derived from operators practicing calibration methods per manufacturer recommendations 
via personal communications with industry collaborators providing the data. 

The analysis incorporated publicly-available open-source remotely sensed data via Earth-
orbiting satellite platforms specific to the crop production year of the yield data. This was done 
to minimize project costs and support development of an industry tool that would not require 
costly data acquisition fees. Although many platforms exist providing this type of data, 
researchers utilized the European Space Agency’s (ESA) Sentinel 21 missions within the 
Copernicus program. Designed for land monitoring at high spatial, temporal, and spectral 
resolutions, the Sentinel 2 mission provides ideal data for this analysis. The Sentinel 2 Earth-
observation mission currently consists of two identical satellite platforms, Sentinel-2A and 
Sentinel-2B and is capable of providing global coverage approximately every 5 days. The 
satellites utilize identical sensors and collect EM reflectance in visible, near-infrared (NIR), and 
shortwave infrared (SWIR) wavelengths at varying spatial resolutions ranging from 10 – 60 
meters. For this analysis, 20-meter products were used based on known importance to crop 
phenology attributes such as leaf area index, crop canopy health, and crop canopy moisture 
content and are shown in Table 2.

Table 2. Sentinel 2 bands and accompanying wavelengths used for yield prediction.

Band ID
Center 

Wavelength
Band 2 490 nm
Band 3 560 nm
Band 4 665 nm
Band 5 705 nm
Band 6 740 nm
Band 7 783 nm
Band 8a 865 nm
Band 11 1,610 nm
Band 12 2,190 nm

Geoprocessing tools were developed to spatially align yield and remote sensing data to 
facilitate ANN regression model development, training, and testing regimes. It also included 
calculating yield estimates derived from SSURGO NCCPI metrics as a criterion with which to 
base model performance. 

                                               
1 https://sentinel.esa.int/web/sentinel/missions/sentinel-2



INL/EXT-20-60469

Page 12

Key Results

In all cases, ANN models outperformed the previously used SSURGO NCCPI method 
relative to prediction error. Table 3 shows the comparisons of prediction root mean square errors 
(RMSE) for each crop model for ANN and NCCPI predictions. 

Table 3. ANN and NCCPI yield prediction metrics.

Crop ANN Testing MSE NCCPI RMSE
Corn 22.81 66.02

Wheat 10.29 29.03
Soybeans 5.63 9.25

Figure 8 includes maps and distributions of one of the corn grain fields showing the harvest 
monitor yield data, the ANN-predicted yield inferences, and the NCCPI-derived yield values. 
Visual analysis indicates a high level of alignment between the ANN-predicted and empirical 
harvest monitor data but not with the NCCPI derived values. 

Harvest Monitor Yield

ANN-Predicted Yield
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NCCPI-Derived Yield
Figure 8. Comparison of empirical harvest monitor (top), ANN-predicted (middle), and NCCPI-

derived (bottom) yield maps.

Based on these results, the ANN yield modelling capabilities were incorporated into 
bioLEADS to develop more accurate and industrially relevant yield data layers to support 
subfield crop allocation to generate advanced ILM field designs. Four fields were selected from 
the switchgrass fields data derived from the biomass feedstock field allocation method. The 
fields were randomly selected from corn grain producing fields for the 2019 crop year with field 
boundaries that most closely aligned spatially with visual cropping patterns apparent in 2019 
Sentinel 2 imagery data, which was used as an input for the trained ANN crop yield prediction 
model. Field boundaries were spatially edited to fine tune spatial alignment so that only visibly 
cropped areas were included within the boundary. Only four fields were chosen given the time 
needed for the computationally intensive subfield crop allocation method described in the 
subsequent section and the need to run each field through multiple optimization scenarios. Figure 
9 shows the predicted yield maps and data distributions for each field. It is important to note that 
the yield prediction model generated some yield values of 0 for Field 117 and Field 542. The 
ANN was trained with a distribution containing some near-zero values and it is possible these 
areas resulted in 2019 corn grain yield values that were close to zero for that crop year. Given 
that these patterns cannot be confirmed with empirical data without direct communication with 
the actual farmers, they were left “as is”.
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Field 117

Field 331

Field 542

Field 614
Figure 9. Predicted yield maps for the four fields selected for subfield crop allocations.

Table 4 shows the mean corn grain yield from the crop yield prediction method. USDA 
NASS data shows the mean corn grain yield for Kansas in 2019 to 133 bu/acre. Given that field 
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site suitability for perennial energy crop production is intended to prioritize lower yielding fields 
with additional environmental vulnerabilities making them more suitable for a perennial energy 
crop such as switchgrass, these yield predictions are in line with known, publicly available 
metrics.

Table 4. Mean yield values by field from the Crop Yield Prediction method.

Field Mean (bu/acre)
117 93.28
331 92.96
542 120.46
614 109.49

Subfield Crop Allocations

A geospatial method was developed incorporating an evolutionary GA for subfield crop 
allocation. Its purpose is to automate subfield allocation of switchgrass and row crop production 
acres by optimizing user-defined outcomes spanning economic and environmental benefit 
domains. For this analysis, crop allocation method was used to design the afore mentioned fields 
with sub-field integration of switchgrass with the goal of maintaining both crop types inside each 
field boundary. 

From a high level, a GA is a metaheuristic designed to find an optimal solution based on 
natural evolutionary processes. It starts with an initial population of unique individuals (in this 
case, stochastic field designs), and applies a fitness function to select potential breeding pairs and 
individuals surviving into the next generation. Children (new field designs) are produced by 
breeding randomly selected pairs with desirable traits (higher fitness function scores). Over 
subsequent generations, the process is repeated and includes random occurrences of mutations to 
avoid convergence at local maxima.

Methods Brief

The model accepts a common geospatial file format (shapefile) defining the field spatial 
extent in a grid format with a given size dimension as a parameter. For this analysis, a 10-meter 
by 10-meter grid dimension was used. Each grid cell includes a set of attributes needed for the 
GA fitness function and are as follows.

Bioenergy Crop Site Suitability Score – This metric is calculated by applying the subfield multi-
criteria site suitability algorithm. For this analysis, the score was calculated based on available 
water storage (AWS) at the root zone, soil organic content (SOC), erosivity, and topography. 
Using a linear fuzzy-logic model similar to the function incorporated field suitability, a final 
score is calculated ranking each subfield grid cell based on its suitability for a perennial crop 
based on the desire to place switchgrass in environmentally sensitive field areas to reduce soil 
erosion and enhance soil carbon storage. 

Row Crop Yield – This value represents the traditional row crop yield potential captured from 
either empirical yield data or generated using the previously described crop yield prediction 
method.
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Switchgrass Yield – A value of 2.2583 dt/acre was used all fields this analysis. This value was 
based on the 2019 switchgrass yield estimate from the POLYSYS outputs allocated to the 
individual fields.

Additionally, an input file containing economic assumptions is utilized by the fitness 
function. It includes data for input and management expenses, pricing estimates, and ecosystem 
services (ES) valuations for each crop type (row crop and energy crops). Table 5 shows the input 
parameters used for the four fields described in the previous section. The material and 
operational costs were based on crop budgets compiled by ORNL researchers to support the 
BT16 analysis. The corn grain grower payment was calculated from the 10-year mean for Kansas 
(NASS, 2010 - 2019) and indexed to 2016 dollars for parity with afore mentioned costs. 
Although the switchgrass grower payment in the 2018 Herbaceous Feedstock State of 
Technology (SOT) report (Roni et al., 2018) is reported as $38.87, it was decided to use a more 
aggressive cost target of $26.66, the same cost associated with three-pass corn stover. In the 
2019 SOT report, ILM strategies were incorporated to reduce biomass access costs by 20% and 
to increase biomass availabilities in Kansas, Nebraska and Colorado (Roni et al., 2019). The 
analysis results implied that even with the 20% reduced cost previously demonstrated in the 2018 
TEA, switchgrass was not cost-competitive to be included into the feedstock blend, which 
suggested that 20% might not be a low-enough cost reduction target. Therefore, the minimized 
grower payment for three-pass corn stover at 26.66 $/dry ton (approximately 30% cost reduction 
from 38.87 $/dry ton) was used as a cost target for the assumed switchgrass grower payment. 
Additionally, although there are multiple pathways to incorporate potential ecosystem services 
(ES) valuations, these were not included at this time because of large discrepancies in potential 
contributions in the literature.

Table 5. Crop input costs and pricing assumptions used in the GA input file.

Crop
Material 

Costs
Operational 

Costs Crop Price
Ecosystem Service 

Valuation
Switchgrass $42.83/acre $90.26/acre $26.66/dt $0
Corn Grain $136.53/acre $439.95/acre $4.57/bu $0

Finally, model parameters used for subfield crop allocation runs are shown in Table 6. These 
defined the population size, number of generations, the number of individuals reserved for 
breeding, the probability of an individual for mutation, and the probability for mutation to occur 
of a given gene when an individual experiences mutation.

Table 6. GA parameters
GA Parameter Value
Population Size 6,000

Number of Generations 400
Number of Breeding Individuals 2,700

Probability for Individual Mutation 0.2
Probability for Gene Mutation 0.5

Upon initialization, a starting population was instantiated where each grid cell was 
stochastically assigned a land management – either switchgrass or corn grain production. To fit 
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computational limits and adhere to the desire to incorporate both switchgrass and corn grain 
production within the field, the starting population was limited to initial fields within an 
approximate range of 40 to 60 percent of switchgrass area. After instantiation, a series of 
geoprocessing steps was used in conjunction with the crop economic parameters to calculate the 
overall field revenue accounting for field efficiency. Equation 5 shows the optimization function 
used for this analysis:

����� ������� = � ��� × �� − ��� � + �� � ∗
����

����

�� ∗ ��

�

���

5

where ����� ������� is the total profit of a field design, �� is the revenue received from selling 
crop i, at yield ��. ���

is the material and services expenses ($/acre) (seed, chemical, fertilizer, 

pesticide etc.) for producing crop i, and operation cost ���
($/acre) includes operating costs such 

as labor costs and application costs for herbicide and fertilizer inputs and tillage and harvest 
operations, ����

is the reported field efficiency (%) for farm operations (Hanna, 2016), ����
is 

the simulated field efficiency (%) for farm operations using the empirical formulation developed 
by (Griffel et al., 2020), and �� is the acreage assigned to crop i. Additionally, the mean site 
suitability score is calculated for each field grid cell assigned to switchgrass land management 
practices. 

To account for environmentally vulnerable subfield areas, a site suitability score is assigned 
to each grid cell. It is assumed a perennial energy crop such as switchgrass is better suited for 
environmentally vulnerable subfield areas when compared to more intensive annual row crops. 
Similar to the previously described method to quantify field site suitability for perennial energy 
crop production, criteria were developed to account for subfield variability in soil water holding 
capacity, soil organic carbon, erosivity, and topography. Table 7 shows the criteria and functions 
used for each criterion. 

Table 7. Criteria and scoring functions used to generate the subfield site suitability score.

Criteria Scoring Function

(1) Available soil water 
storage within crop root 
zone depths

�� = 1 − ���

(2) Topography (slope) �� = ���

(3) Soil organic carbon in 
the 0-30cm layer

�� = 1 − ���

(4) Soil erosivity index �� = ���

A modified version of the linear fuzzy-logic prediction model (Equation 3) was used to 
calculate the site suitability score for each subfield grid cell as shown in Equation 6. For this 
analysis, all criteria were weighted equally with a value of 1. 
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���� = ����,���� 6

where the SSI for grid i is the sum of the products of �� is the fuzzy value of a criteria m for field 
i, �� is the weight of criteria m.

A final score for the field is calculated by standardizing the field revenue and mean 
switchgrass parcel site suitability scores and summing the products of the resultant values and 
their associated weighting factors as shown in Equation 7:

����� ������ = ��� ∗ ��� + ���� ∗ ��� 7

where the Field Score for field i is the sum of the products of the field revenue (FR) for field i
and its associated weighting factor (W) and the mean subfield site suitability score (SSI) for the 
field grids allocated to switchgrass for field i and its associated weighting factor (W). This 
approach was taken to provide a mechanism to tune the GA optimization space toward economic 
or environmental benefit outcomes.

After each field design is scored, n number of fields (2,700 for this analysis as shown in 
Table 6) are randomly selected for pairing by randomly drawing from a group of the highest 
scoring individuals (i.e. those with the most desirable field design traits). Additionally, a limited 
sample of lower-scoring fields is added to the breeding pool to maintain “genetic” diversity of 
the breeding population, or in other words, to avoid local maxima during the evolutionary 
process. Using cross breeding, the child’s grid cell land management class is treated as an 
individual gene and has an equal chance of coming from either parent. After a child is created, 
there is a probability for mutation to occur to an individual. If that happens, an additional 
probability occurs where a specific gene (grid cell) can mutate from its inherited land 
management class. This cycle is repeated for each generation until the model completes the 
specified number of generations.

Given the complexity of subfield crop allocation and unknown impacts of varying the Field 
Score function weighting values, a search space was devised were the GA was tasked with 
designing each field four times using a FR weighting factor of 1 and four different weight factors 
for SSI including 1, 0.75, 0.50, and 0.25. This was done to evaluate the effects of equally 
weighting the SSI and FR metrics and then decreasing the influence of the SSI factor thereby 
adding emphasis to field economic outcomes.

Key Results

The results show that for fields 117, 331, and 542, the GA was able to construct field 
designs incorporating switchgrass at a reduced access cost into subfield areas that outperformed 
the economic performance of homogenous corn grain production. In all cases, this was achieved 
by reducing the SSI weight to 0.25. These results are shown in Table 8. The GA was not able to 
converge on a better economic solution for field 614 indicating it might be more suitable in this 
scenario to leave it entirely in row crop production if field revenue is the primary concern. It is 
also possible that the GA parameterization (bounded by computational resources) limited the 
solution space needed to find an optimal solution for switchgrass integration.
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Table 8. Field results for the highest economic returns generated by the GA.

Field
Baseline 
Revenue

ILM 
Revenue

Corn Grain 
Acres

Switchgrass 
Acres

117 -$11,120 -$8,341 34.7 68.5
331 -$13,734 -$9,901 36.0 122.8
542 $3,422 $4,564 91.0 44.0

Figure 10 shows maps of the final field designs and plots of the evolution of the field 
revenue and switchgrass area SSI scores over the 400-generation run. Purple regions in the field 
plot maps denote switchgrass production and yellow areas symbolize corn grain production. 

Field 117

Field 331



INL/EXT-20-60469

Page 20

Field 542
Figure 10. Field designs (left) incorporation switchgrass production (left) and corn grain 

production (yellow) with plots (right) showing economic and SSI metrics during the evolutionary 
process.

Conclusion

The field designs generated using the subfield allocation method show that it is possible to 
reduce feedstock access costs by 30 percent and still generate improved economic and 
environmental outcomes at the field level. However, this process depends upon identifying 
suitable fields, allocating projected energy crop supplies to individual fields, developing accurate 
and industrially relevant subfield yield maps, and optimization methods to integrate energy and 
row crop production at subfield levels. 

Over the past three years, substantial effort and progress has been made to develop ILM 
modelling capabilities to support reduced biomass feedstock access costs represented by grower 
payment assumptions. Farmers and/or land owners will not accept reduced payments by 
themselves to support an emerging bioeconomy. Instead, pathways must be developed to 
maximize the holistic value of integrating energy crop production in fields and subfield areas in 
ways that generate economic value and conditions supporting potential ES revenue streams. 

Building upon the successes of LEAF, bioLEADS was developed to not only provide 
landscape assessment capabilities but to incorporate new modelling capabilities to support 
landscape- and field-level design efforts with an emphasis on reducing feedstock access costs to 
support BETO cost targets. 
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